
    \ci9                     H   d Z ddlZddlmZmZmZmZ ddlmZ ddl	m
Z
mZ ddlmZ g dZ	 	 ddZ ed          dd            Z ed          dd            ZddZ edd          d             Z ed          dd            ZddZ edd          d             ZdS )z!Cholesky decomposition functions.    N)asarray_chkfiniteasarray
atleast_2d
empty_like)_apply_over_batch   )LinAlgError_datacopied)get_lapack_funcs)cholesky
cho_factor	cho_solvecholesky_bandedcho_solve_bandedFTc                 ~   |rt          |           nt          |           }t          |          }|j        dk    rt	          d|j         d          |j        d         |j        d         k    rt	          d|j         d          |j        dk    r@t          t          j	        d|j
                            j
        }t          ||          |fS |pt          ||           }t          d	|f          \  } |||||
          \  }}	|	dk    rt          |	 d          |	dk     rt	          d|	  d          ||fS )z,Common code for cholesky() and cho_factor().   z*Input array needs to be 2D but received a zd-array.r   r   z8Input array is expected to be square but has the shape: .dtype)potrf)loweroverwrite_acleanz7-th leading minor of the array is not positive definitez$LAPACK reported an illegal value in z!-th argument on entry to "POTRF".)r   r   r   ndim
ValueErrorshapesizer   npeyer   r   r
   r   r	   )
ar   r   r   check_finitea1dtr   cinfos
             m/var/www/html/mdtn/previsions/meteo_cartes/venv/lib/python3.11/site-packages/scipy/linalg/_decomp_cholesky.py	_choleskyr'      s    ".	=	1			71::B	BB 
w!||WbgWWWXXX	x{bhqk!! 3')x3 3 3 4 4 	4 
w!||bfQbh///006"B'''..3R!3!3Kj2%00FEeBeEJJJGAtaxxLLL
 
 	
 axx$D5 $ $ $
 
 	
 e8O    )r    r   c                 4    t          | ||d|          \  }}|S )aU  
    Compute the Cholesky decomposition of a matrix.

    Returns the Cholesky decomposition, :math:`A = L L^*` or
    :math:`A = U^* U` of a Hermitian positive-definite matrix A.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to be decomposed
    lower : bool, optional
        Whether to compute the upper- or lower-triangular Cholesky
        factorization. During decomposition, only the selected half of the
        matrix is referenced. Default is upper-triangular.
    overwrite_a : bool, optional
        Whether to overwrite data in `a` (may improve performance).
    check_finite : bool, optional
        Whether to check that the entire input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (M, M) ndarray
        Upper- or lower-triangular Cholesky factor of `a`.

    Raises
    ------
    LinAlgError : if decomposition fails.

    Notes
    -----
    During the finiteness check (if selected), the entire matrix `a` is
    checked. During decomposition, `a` is assumed to be symmetric or Hermitian
    (as applicable), and only the half selected by option `lower` is referenced.
    Consequently, if `a` is asymmetric/non-Hermitian, `cholesky` may still
    succeed if the symmetric/Hermitian matrix represented by the selected half
    is positive definite, yet it may fail if an element in the other half is
    non-finite.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky
    >>> a = np.array([[1,-2j],[2j,5]])
    >>> L = cholesky(a, lower=True)
    >>> L
    array([[ 1.+0.j,  0.+0.j],
           [ 0.+2.j,  1.+0.j]])
    >>> L @ L.T.conj()
    array([[ 1.+0.j,  0.-2.j],
           [ 0.+2.j,  5.+0.j]])

    Tr   r   r   r!   r'   r    r   r   r!   r$   s        r&   r   r   2   s-    p %[&24 4 4HAuHr(   c                 8    t          | ||d|          \  }}||fS )a
  
    Compute the Cholesky decomposition of a matrix, to use in cho_solve

    Returns a matrix containing the Cholesky decomposition,
    ``A = L L*`` or ``A = U* U`` of a Hermitian positive-definite matrix `a`.
    The return value can be directly used as the first parameter to cho_solve.

    .. warning::
        The returned matrix also contains random data in the entries not
        used by the Cholesky decomposition. If you need to zero these
        entries, use the function `cholesky` instead.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to be decomposed
    lower : bool, optional
        Whether to compute the upper or lower triangular Cholesky factorization.
        During decomposition, only the selected half of the matrix is referenced.
        (Default: upper-triangular)
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance)
    check_finite : bool, optional
        Whether to check that the entire input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (M, M) ndarray
        Matrix whose upper or lower triangle contains the Cholesky factor
        of `a`. Other parts of the matrix contain random data.
    lower : bool
        Flag indicating whether the factor is in the lower or upper triangle

    Raises
    ------
    LinAlgError
        Raised if decomposition fails.

    See Also
    --------
    cho_solve : Solve a linear set equations using the Cholesky factorization
                of a matrix.

    Notes
    -----
    During the finiteness check (if selected), the entire matrix `a` is
    checked. During decomposition, `a` is assumed to be symmetric or Hermitian
    (as applicable), and only the half selected by option `lower` is referenced.
    Consequently, if `a` is asymmetric/non-Hermitian, `cholesky` may still
    succeed if the symmetric/Hermitian matrix represented by the selected half
    is positive definite, yet it may fail if an element in the other half is
    non-finite.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cho_factor
    >>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
    >>> c, low = cho_factor(A)
    >>> c
    array([[3.        , 1.        , 0.33333333, 1.66666667],
           [3.        , 2.44948974, 1.90515869, -0.27216553],
           [1.        , 5.        , 2.29330749, 0.8559528 ],
           [5.        , 1.        , 2.        , 1.55418563]])
    >>> np.allclose(np.triu(c).T @ np. triu(c) - A, np.zeros((4, 4)))
    True

    Fr*   r+   r,   s        r&   r   r   o   s1    P %[&24 4 4HAue8Or(   c                 4    | \  }}t          |||||          S )a  Solve the linear equations A x = b, given the Cholesky factorization of A.

    The documentation is written assuming array arguments are of specified
    "core" shapes. However, array argument(s) of this function may have additional
    "batch" dimensions prepended to the core shape. In this case, the array is treated
    as a batch of lower-dimensional slices; see :ref:`linalg_batch` for details.

    Parameters
    ----------
    (c, lower) : tuple, (array, bool)
        Cholesky factorization of a, as given by cho_factor
    b : array
        Right-hand side
    overwrite_b : bool, optional
        Whether to overwrite data in b (may improve performance)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        The solution to the system A x = b

    See Also
    --------
    cho_factor : Cholesky factorization of a matrix

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cho_factor, cho_solve
    >>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
    >>> c, low = cho_factor(A)
    >>> x = cho_solve((c, low), [1, 1, 1, 1])
    >>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4))
    True

    overwrite_br!   )
_cho_solve)c_and_lowerbr0   r!   r$   r   s         r&   r   r      s'    R HAuaE{VVVVr(   )r$   r   )r3   z1|2c                    |rt          |          }t          |           } nt          |          }t          |           } | j        dk    s| j        d         | j        d         k    rt	          d          | j        d         |j        d         k    r t	          d| j         d|j         d          |j        dk    rZt          t          j        d|j	                  d	ft          j
        d| j	                            j	        }t          ||          S |pt          ||          }t          d
| |f          \  } || |||          \  }}	|	dk    rt	          d|	  d          |S )Nr   r   r   z$The factored matrix c is not square.zincompatible dimensions (z and )r   T)potrsr   r0   illegal value in zth argument of internal potrs)r   r   r   r   r   r   r   r   r   r   onesr   r
   r   )
r$   r3   r   r0   r!   b1r#   r6   xr%   s
             r&   r1   r1      sy    q!!a  QZZAJJv{{agajAGAJ..?@@@wqzRXa[  NQWNN28NNNOOO 
w!||q111481113 338 	"B''''3R!3!3Kj1b'22FEeArK@@@GAtqyyQdUQQQRRRHr(   )abr   c                    |rt          |           } nt          |           } | j        dk    rDt          t	          j        ddgddgg| j                            j        }t          | |          S t          d| f          \  } || ||          \  }}|dk    rt          | d          |dk     rt          d| d          |S )	ai  
    Cholesky decompose a banded Hermitian positive-definite matrix

    The matrix a is stored in ab either in lower-diagonal or upper-
    diagonal ordered form::

        ab[u + i - j, j] == a[i,j]        (if upper form; i <= j)
        ab[    i - j, j] == a[i,j]        (if lower form; i >= j)

    Example of ab (shape of a is (6,6), u=2)::

        upper form:
        *   *   a02 a13 a24 a35
        *   a01 a12 a23 a34 a45
        a00 a11 a22 a33 a44 a55

        lower form:
        a00 a11 a22 a33 a44 a55
        a10 a21 a32 a43 a54 *
        a20 a31 a42 a53 *   *

    Parameters
    ----------
    ab : (u + 1, M) array_like
        Banded matrix
    overwrite_ab : bool, optional
        Discard data in ab (may enhance performance)
    lower : bool, optional
        Is the matrix in the lower form. (Default is upper form)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (u + 1, M) ndarray
        Cholesky factorization of a, in the same banded format as ab

    See Also
    --------
    cho_solve_banded :
        Solve a linear set equations, given the Cholesky factorization
        of a banded Hermitian.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky_banded
    >>> from numpy import allclose, zeros, diag
    >>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
    >>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
    >>> A = A + A.conj().T + np.diag(Ab[2, :])
    >>> c = cholesky_banded(Ab)
    >>> C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :])
    >>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5)))
    True

    r   r   r   )pbtrf)r   overwrite_abz'-th leading minor not positive definiter8   z-th argument of internal pbtrf)r   r   r   r   r   arrayr   r   r   r	   r   )r<   r?   r   r!   r#   r>   r$   r%   s           r&   r   r     s    z  r""R[[ 
w!||RX1v1v&6bhGGGHHN"B''''j2%00FEeBe,???GAtaxxTJJJKKKaxxQTQQQRRRHr(   c                 4    | \  }}t          |||||          S )a  
    Solve the linear equations ``A x = b``, given the Cholesky factorization of
    the banded Hermitian ``A``.

    The documentation is written assuming array arguments are of specified
    "core" shapes. However, array argument(s) of this function may have additional
    "batch" dimensions prepended to the core shape. In this case, the array is treated
    as a batch of lower-dimensional slices; see :ref:`linalg_batch` for details.

    Parameters
    ----------
    (cb, lower) : tuple, (ndarray, bool)
        `cb` is the Cholesky factorization of A, as given by cholesky_banded.
        `lower` must be the same value that was given to cholesky_banded.
    b : array_like
        Right-hand side
    overwrite_b : bool, optional
        If True, the function will overwrite the values in `b`.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        The solution to the system A x = b

    See Also
    --------
    cholesky_banded : Cholesky factorization of a banded matrix

    Notes
    -----

    .. versionadded:: 0.8.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky_banded, cho_solve_banded
    >>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
    >>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
    >>> A = A + A.conj().T + np.diag(Ab[2, :])
    >>> c = cholesky_banded(Ab)
    >>> x = cho_solve_banded((c, False), np.ones(5))
    >>> np.allclose(A @ x - np.ones(5), np.zeros(5))
    True

    r/   )_cho_solve_banded)cb_and_lowerr3   r0   r!   cbr   s         r&   r   r   V  s0    f KRRE{*68 8 8 8r(   )rD   r   c                 ~   |rt          |           } t          |          }nt          |           } t          |          }| j        d         |j        d         k    rt          d          |j        dk    rot          t          j        ddgddgg| j                            }t          |dft          j
        d|j                            j        }t          ||          S t          d| |f          \  } || |||	          \  }}	|	dk    rt          |	 d
          |	dk     rt          d|	  d          |S )Nr   z&shapes of cb and b are not compatible.r   r   Tr   )pbtrsr7   z&th leading minor not positive definiter8   zth argument of internal pbtrs)r   r   r   r   r   r   r   r@   r   r   r9   r   r   r	   )
rD   r3   r   r0   r!   mr#   rG   r;   r%   s
             r&   rB   rB     sQ    r""a  R[[AJJ 
x|qwqz!!ABBB 	v{{BHq!fq!f%5RXFFFGGq$i!')B)B)BCCI!2&&&&j2q'22FEeBK@@@GAtaxxTIIIJJJaxxQdUQQQRRRHr(   )FFTT)FFT)FT)__doc__numpyr   r   r   r   r   scipy._lib._utilr   _miscr	   r
   lapackr   __all__r'   r   r   r   r1   r   r   rB    r(   r&   <module>rP      s   ' '     D D D D D D D D D D D D / . . . . . + + + + + + + + $ $ $ $ $ $   8<       F 89 9 9 9x 8I I I IX*W *W *W *WZ 8\**  +*8 9L L L L^58 58 58 58p 9l++  ,+  r(   