
    \ci                         d dl Z d dlZd dlmZmZmZmZ d dlm	c m
Z ddlmZ  e             ed dd           dd	d
d                        ZdS )    N)array_namespacexp_capabilities	xp_device_length_nonmasked   )_axis_nan_policy_factoryc                     | S N )xs    f/var/www/html/mdtn/previsions/meteo_cartes/venv/lib/python3.11/site-packages/scipy/stats/_variation.py<lambda>r      s    a     c                     | fS r
   r   )r   _s     r   r   r      s    A4 r   )	n_outputsresult_to_tuple	propagateF)keepdimsc                   t          |           }|                    |           } ||                    | d          } d}|                    t          | |          | j        t          |                     }t          j        dd          5  t          j	                    5  t          j
        d           |                    | |          }|                    | |          }|||z
  z  dz  }	||	z  |z  }
ddd           n# 1 swxY w Y   ddd           n# 1 swxY w Y   d	 }t          j        ||k    ||f||

          }
|
j        dk    r|
d         n|
S )a  
    Compute the coefficient of variation.

    The coefficient of variation is the standard deviation divided by the
    mean.  This function is equivalent to::

        np.std(x, axis=axis, ddof=ddof) / np.mean(x)

    The default for ``ddof`` is 0, but many definitions of the coefficient
    of variation use the square root of the unbiased sample variance
    for the sample standard deviation, which corresponds to ``ddof=1``.

    The function does not take the absolute value of the mean of the data,
    so the return value is negative if the mean is negative.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate the coefficient of variation.
        Default is 0. If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains ``nan``.
        The following options are available:

          * 'propagate': return ``nan``
          * 'raise': raise an exception
          * 'omit': perform the calculation with ``nan`` values omitted

        The default is 'propagate'.
    ddof : int, optional
        Gives the "Delta Degrees Of Freedom" used when computing the
        standard deviation.  The divisor used in the calculation of the
        standard deviation is ``N - ddof``, where ``N`` is the number of
        elements.  `ddof` must be less than ``N``; if it isn't, the result
        will be ``nan`` or ``inf``, depending on ``N`` and the values in
        the array.  By default `ddof` is zero for backwards compatibility,
        but it is recommended to use ``ddof=1`` to ensure that the sample
        standard deviation is computed as the square root of the unbiased
        sample variance.

    Returns
    -------
    variation : ndarray
        The calculated variation along the requested axis.

    Notes
    -----
    There are several edge cases that are handled without generating a
    warning:

    * If both the mean and the standard deviation are zero, ``nan``
      is returned.
    * If the mean is zero and the standard deviation is nonzero, ``inf``
      is returned.
    * If the input has length zero (either because the array has zero
      length, or all the input values are ``nan`` and ``nan_policy`` is
      ``'omit'``), ``nan`` is returned.
    * If the input contains ``inf``, ``nan`` is returned.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import variation
    >>> variation([1, 2, 3, 4, 5], ddof=1)
    0.5270462766947299

    Compute the variation along a given dimension of an array that contains
    a few ``nan`` values:

    >>> x = np.array([[  10.0, np.nan, 11.0, 19.0, 23.0, 29.0, 98.0],
    ...               [  29.0,   30.0, 32.0, 33.0, 35.0, 56.0, 57.0],
    ...               [np.nan, np.nan, 12.0, 13.0, 16.0, 16.0, 17.0]])
    >>> variation(x, axis=1, ddof=1, nan_policy='omit')
    array([1.05109361, 0.31428986, 0.146483  ])

    N)r   )axisdtypedeviceignore)divideinvalidg      ?c                     t          | |          }|                    |j        |j        t	          |                    }|                    | dk    |                    ||          |j                  S )Nr   r   )r   asarrayinfr   r   wherecopysignnan)std_amean_amxp_xp_infs       r   special_casezvariation.<locals>.special_casey   s`    eV,, ++cgV\)FBSBS+TTyyCLL&$A$A37KKKr   )
fill_valuer   )r   r    reshaper   r   r   nperrstatewarningscatch_warningssimplefiltermeanstdxpxapply_wherendim)ar   
nan_policyddofr   xpnr&   r%   
correctionresultr)   s               r   	variationr=      s   r 
		B


1A |JJq%  


$QT222!')TU,,
WWA
+Xx
8
8
8 - -(:Q:S:S - -h'''&&qt$$1t8ns*
#f,- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -L L L _dai5&/)f> > >F  ))6"::v5s7   D"AD8DD	DD	DD"D)r   r   r   )r.   numpyr,   scipy._lib._array_apir   r   r   r   scipy._lib.array_api_extra_libarray_api_extrar3   _axis_nan_policyr   r=   r   r   r   <module>rD      s                    ) ( ( ( ( ( ( ( ( 6 6 6 6 6 6 K1.?.?  q6U q6 q6 q6 q6  q6 q6 q6r   